Tetrahedron Letters No. 25, pp 2147 - 2150, 1977. Pergamon Press. Printed in Great Britain.

CONFIGURATION OF AN ETHYL β -NITROCINNAMATE AND ITS 1,2- AND 1,4-CYCLOADDITION TO CYCLOPENTADIENE

Chung-gi Shin,^{*} Hirotoshi Narukawa, Masanori Yamaura, and Juji Yoshimura^{**} Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221 ^{**}Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

(Received in Japan 8 February 1977; received in UK for publication 16 May 1977)

In previous papers, we reported on the stereospecific formation of ethyl α,β unsaturated β -nitrocarboxylates by the elimination reaction of ethyl α -chloro- or α -acetoxy- β -nitrocarboxylates with sodium acetate¹⁾ and on the assignment of their configuration.²⁾ Although the geometric configuration of the aliphatic compounds determined to be (E)-isomer from isomerization experiments and their NMR data, that of ethyl β -nitrocinnamate (<u>1</u>) could not be determined. In this paper, we wish to communicate that the configuration of <u>1</u> was assigned to be (Z)-isomer, by the conversion of <u>1</u> into ethyl 3-nitro-3-phenylbicyclo[2.2.1]- and [3.2.0]hept-5ene-2-carboxylates (<u>2</u> and <u>3</u>) and the subsequent formation of the corresponding tricyclic compounds containing an isoxazolidinone ring.

A solution of <u>1</u> (9 mmol) and cyclopentadiene (14 mmol) in dry benzene (20 ml) was heated in a sealed tube^{3,4}) at 100°C for 1 hr and then evaporated under reduced pressure to give a semi-solid substance. Separation of it on a silica gel column, using benzene and acetone (50 : 1 V/V) as eluent, gave two kinds of crystals in a fairly good yield.

From the absence of long range coupling between 7- and 2-protons according to W-letter rule³⁻⁵⁾ and the ring foramation between 3-ethoxycarbonyl and 2-mono- or dihydroxyamino groups, after reduction of nitro group, as shown in the following experiments, the first eluted one was assigned to be ethyl 3-<u>endo</u>-nitro-3-<u>exo</u>-phenylbicyclo[2.2.1]hept-5-ene-2-<u>endo</u>-carboxylate (2; colorless needles from ethanol, yield 47.3%, mp 84-85°C. IR: 1725 (ester), 1640 (C=C), 1540 and 1360 (NO₂) cm⁻¹. NMR: δ 1.46 (1H, 7b-H, dt, J_{1,7b}=2.0, J_{4,7b}=2.0Hz), 1.67 (1H, 7a-H, d, J_{7a,7b}=9.2Hz), 3.18 (1H, 1-H, s), 3.62 (1H, 2-H, d, J_{1,2}=3.0Hz), 6.10 (1H, 5-H, dd, J_{5,6}=5.7, J_{4,5}=3.0Hz), 6.73 (1H, 6-H, dd, J_{1,6}=3.0Hz), 7.40-7.85 (5H, C₆H₅, m). Anal; Found: C, 66.63; H, 5.93; N, 4.78%. Calcd for C₁₆H₁₇NO₄: C, 66.88; H, 5.96; N, 4.88%). The second eluted compound which shows considerably different pattern from <u>2</u> and two equal J values between <u>cis</u> protons on cyclobutane ring could be assigned to be ethyl 3-<u>endo</u>-nitro-3-<u>exo</u>-phenylbicyclo[3.2.0^{1.4}]hept-5-

ene-2-<u>endo</u>-carboxylate (3; colorless needles from ethanol, yield 37.5%, mp 90-91°C. IR: 1735 (ester), 1620 (C=C), 1550 and 1350 (NO₂) cm⁻¹. NMR: δ 2.12 (1H, 7b-H, dt, J_{1,7b}=2.0Hz), 2.66 (1H, 7a-H, dd, J_{7a,7b}=18.0, J_{1,7a}=8.3Hz), 3.86 (1H, 2-H, m, J_{1,2}=8.3Hz), 3.88 (1H, 1-H, m), 5.60 (1H, 4-H, d, J_{1,4}=8.3Hz), 5.95 (1H, 5-H, dd, J_{5,6}=5.7Hz), 6.08 (1H, 6-H, dd), 7.38-7.94 (5H, C₆H₅, m). Anal; Found: C, 66.92; H, 5.95; N, 4.86%. Calcd for C₁₆H₁₇NO₄: C, 66.88; H, 5.96; N, 4.88%). Although many photochemical 1,2-cycloaddition between diens and dienophiles are appeared in the literatures, ^{6,7)} thermal 1,2-cycloadducts such as <u>3</u> are scarcely known. Decoupling data (Fig 1) for the assignment and the <u>endo</u>-rule in Diels-Alder reaction indicates that the cycloaddition proceeds stereospecifically to yield only <u>endo</u>isomer.

The structures of $\underline{2}$ and $\underline{3}$ were further proved by conversion into the corresponding tricyclic derivatives. When $\underline{2}$ (3.5 mmol) was reduced by aluminumamalgam in ether (50 ml), ⁸ 6-exo-phenyl-endo-4-oxa-5-azatricyclo[5.2.1.0^{2.6}]dec-8-ene-3-one (<u>6</u>) was obtained by one step (colorless needles from ethanol, yield 31.6% from $\underline{2}$, mp 112-113^oC. IR: 3240 (NH), 1765 (lactone), 1640 (C=C) cm⁻¹. NMR: δ 1.54 (1H, 10b-H, dt, J_{1,10b}=2.0, J_{7,10b}=2.0Hz), 1.70 (1H, 10a-H, d, J_{10a,10b}=9.0Hz), 3.48 (2H, 1.7-H, m), 3.76 (1H, 2-H, d, J_{1,2}=4.0Hz), 6.14 (1H, NH, broad s), 6.43 (1H, 8-H, dd, J_{8,9}=5.5, J_{7,8}=3.0Hz), 6.56 (1H, 9-H, dd, J_{1,9}=3.0Hz), 7.43 (5H, C₆H₅, m). Anal; Found: C, 73.89; H, 5.82; N, 6.14%. Calcd for C₁₄H₁₃NO₂: C, 73.99; H, 5.77; N, 6.16%). From the above result, it is deduced that the compound <u>2</u> was reduced to the corresponding unstable <u>endo</u>-hydroxyamino intermediate (<u>4</u>), which cyclized immediately to give <u>6</u>.

In the similar reduction, compound 3 gave unexpected product, ethyl 3-endodihydroxyamino-3-exo-phenylbicyclo[3.2.0 $\overline{1.4}$]hept-5-ene-2-endo-carboxylate (5; colorless fibrous crystals from benzene, yield 48.8%, mp 97-98°C. IR: 3450 and 3225 (OH, strong), 1738 (ester), 1640 (C=C) cm⁻¹. NMR: δ 2.41 (1H, 7b-H, dd, $J_{1,7b}=2.0Hz$, 2.77 (lH, 7a-H, dd, $J_{7a,7b}=17.5$, $J_{1,7a}=8.0Hz$), 3.46 (lH, 1-H, m), 3.64 (1H, 2-H, d, J_{1,2}=8.0Hz), 5.66 (1H, 4-H, d, J_{1,4}=8.0Hz), 5.88 (1H, 5-H, dd, $J_{5,6}=6.0Hz$, 6.04 (1H, 6-H, dd, $J_{6,7}=3.0Hz$), 2.05-3.00 and 7.20-7.70 (2H, N(OH)₂), 7.40 (5H, C₆H₅, m). Anal; Found: C, 66.35; H, 6.63; N, 4.78%. Calcd for $C_{16}H_{19}NO_4$: C, 66.42; H, 6.62; N, 4.84%). Because of the high unstability of 5 in the presence of water, the attempt to prove the presence of two active hydrogens by deuterium exchange in D₂O was unsuccessful. However, from the fact obtained in following experiment, it was found that 5 is the first example in which a nitro group was reduced into a dihydroxyamino group. When 5 (0.6 mmol) was heated in dry benzene (10 ml) at 50°C for 1 hr, the expected 6-exo-phenyl-endo-4-oxa- $5-azatricyclo[5.3.0.1.70^{2.6}]dec-8-ene-3-one-5-ol (7)$ was obtained (colorless prisms from hexane and ethanol, yield 52.5%, mp 118-119^OC. IR: 3340 (OH, strong), 1745 (lactone), 1620 (C=C) cm⁻¹. NMR: δ 2.38 (lH, 10b-H, J_{1,10b}=2.5Hz), 2.74 (lH, 10a-H, J_{10a,10b}=18.0, J_{1,10a}=8.0Hz), 3.43 (1H, 1-H, octet), 3.74 (1H, 2-H, d, $J_{1,2}=8.0Hz$, 5.64 (1H, 7-H, $J_{1,7}=8.0Hz$), 5.79 (1H, 8-H, dd, $J_{7,8}=3.0$, $J_{8,9}=6.0Hz$), 6.12 (1H, 9-H, J_{9.10}=3.0Hz), 7.20-7.70 (1H, N(OH)), 7.40 (5H, C₆H₅, m). MS: m/e

7ppm.

5

10a^{10b}

2

3

244 (M^+). Anal; Found: C, 68.72; H, 5.39; N, 5.75%. Calcd for $C_{14}H_{13}NO_3$: C, 69.12; H, 5.39; N, 5.76%).

Furthermore, the structure of $\underline{7}$ was supported that the acetylation of $\underline{7}$ (0.5 mmol) with acetic anhydride (10 ml) in the presence of pyridine (3 ml) gave the corresponding O-acetyl derivative ($\underline{8}$; colorless prisms from ethanol, yield 48.5%, mp 1070108^OC. IR: 1775 (acetyl), 1755 (lactone), 1630 (C=C) cm⁻¹. NMR: δ 2.26 (3H, OCOCH₃, s), 2.46 (1H, 10b-H, J_{1,10b}=2.0Hz), 2.80 (1H, 10a-H, J_{10a,10b}=18.8, J_{1,10a}=8.1Hz), 3.40 (1H, 1-H, octet), 3.85 (1H, 2-H, d, J_{1,2}=8.1Hz), 5.73 (1H, 7-H, d, J_{1,7}=8.1Hz), 5.95 (1H, 8-H, dd, J_{7,8}=3.5, J_{8,9}=6.0Hz), 6.12 (1H, 9-H, J_{9,10}=3.0Hz), 7.45-7.69 (5H, C₆H₅, m), as shown in Fig 2. Anal; Found: C, 67.33; H, 5.11; N, 5.03%. Calcd for C₁₆H₁₅NO₄: C, 67.36; H, 5.30; N, 4.91%).

Consequently, the isoxazolidinone ring formation in 5 and 7 indicated clearly the configuration of 1 to be (Z)-isomer. Moreover, from the chemical shifts, 1,4- and 1,2-cycloaddition products were distinguished from $J_{7a,7b}$ or $J_{10a,10b}$ values, which showed 9.0-9.2Hz in the former adduct^{4,9} and 17.5-18.0Hz region in latter, respectively.

It will be note worthy that two J values between <u>cis</u> protons on cyclobutane ring of 3, 5, 7 and 8 are always equal.

Further works including the analogous study are now in progress.

References

IR spectra were taken in KBr and NMR spectra in CDCl₃ at 100 MHz; s; singlet, d; doublet, t; triplet, m; multiplet.

- C. Shin, Y. Yonezawa, H. Narukawa, K. Nanjo, and J. Yoshimura, <u>Bull. Chem.</u> <u>Soc. Jpn.</u>, <u>45</u>, 3595 (1972).
- 2) C. Shin, Y. Yonezawa, and J. Yoshimura, Nippon Kagaku Kaishi, 1974, 718.
- S. Umezawa, M. Kinoshita, and H. Yanagisawa, <u>Bull. Chem. Soc. Jpn.</u>, <u>40</u>, 209 (1967).
- M. Kinoshita, H. Yanagisawa, S. Doi, E. Kaji, and S. Umezawa, <u>ibid.</u>, <u>42</u>, 194 (1969).
- 5) R. R. Fraser, Can, J. Chem., <u>40</u>, 78 (1962).
- Chapman, A. Griswold, E. Hoganson, G. Lenz, and J. Reasoner, <u>Pure Appl</u>. <u>Chem.</u>, <u>9</u>, 584 (1964).
- 7) For example; L. A. Hull and P. D. Bartlett, <u>J. Org. Chem.</u>, <u>40</u>, 824 (1975).
- C. Shin, M. Masaki, and M. Ohta, <u>Bull. Chem. Soc. Jpn.</u>, <u>43</u>, 3219 (1970).
- 9) P. M. Subramanian, M. T. Emerson, and N. A. LeBel, <u>J. Org. Chem.</u>, <u>30</u>, 2624 (1965).